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We study probabilistically informative (weak) versions of transitivity by using 
suitable definitions of defaults and negated defaults in the setting of coherence 
and imprecise probabilities. We represent p-consistent sequences of defaults and/or 
negated defaults by g-coherent imprecise probability assessments on the respective 
sequences of conditional events. Moreover, we prove the coherent probability 
propagation rules for Weak Transitivity and the validity of selected inference 
patterns by proving p-entailment of the associated knowledge bases. Finally, we 
apply our results to study selected probabilistic versions of classical categorical 
syllogisms and construct a new version of the square of opposition in terms of 
defaults and negated defaults.

© 2015 Elsevier B.V. All rights reserved.

1. Motivation and outline

While Transitivity is basic for (monotonic) reasoning, it does not hold in nonmonotonic reasoning systems 
(e.g., [30]). Therefore, various patterns of Weak Transitivity were studied in the literature (e.g., [19]). 
In probabilistic approaches, Transitivity is probabilistically non-informative, i.e., the probabilities of the 
premises p(C|B) and p(B|A) do not constrain the probability of the conclusion p(C|A) (for instance, the 
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extension p(C|A) = z of the assessment p(C|B) = 1, p(B|A) = 1 is coherent for any z ∈ [0, 1]; see [41,42]). 
In this paper, we study probabilistically informative versions of Transitivity in the setting of coherence 
[4,14,24,26]. Transitivity has also been studied in [7,17]; among other differences, in our approach we use 
imprecise probabilities in the setting of coherence, where conditioning events may have zero probability.

After introducing some notions of coherence for set-valued probability assessments (Section 2), we present 
probabilistic interpretations of defaults and negated defaults (Section 3). We represent a knowledge base 
by a sequence of defaults and/or negated defaults, which we interpret by an imprecise probability assess-
ment on the associated sequence of conditional events. Moreover, we generalize definitions of p-consistency 
and p-entailment. In Section 4 we prove the coherent probability propagation rules for Weak Transitivity 
(Theorem 3 and Theorem 4). We then exploit Theorem 3 to demonstrate the validity of selected patterns 
of (weak) transitive inferences involving defaults and negated defaults by proving p-entailment of the cor-
responding knowledge bases (Section 5). Finally, we illustrate how our results can be applied to investigate 
classical categorical syllogisms (Section 6) and to analyze the traditional square of opposition (Section 7) 
within coherence-based probability logic.

2. Imprecise probability assessments

Given two events E and H, with H �= ⊥, the conditional event E|H is defined as a three-valued logical 
entity which is true if EH (i.e., E ∧H) is true, false if ¬EH is true, and void if H is false. Given a finite 
sequence of n ≥ 1 conditional events F = (E1|H1, . . . , En|Hn), we denote by P any precise probability 
assessment P = (p1, . . . , pn) on F , where pj = p(Ej |Hj) ∈ [0, 1], j = 1, . . . , n. Moreover, we denote by Π
the set of all coherent precise assessments on F . The coherence-based approach to probability has been 
adopted by many authors (see, e.g., [4,6,9,14,20,27,28,36–38,41,43]); we therefore recall only selected key 
features of coherence in this paper. We recall that when there are no logical relations among the events 
E1, H1, . . . , En, Hn involved in F , that is E1, H1, . . . , En, Hn are logically independent, then the set Π
associated with F is the whole unit hypercube [0, 1]n. If there are logical relations, then the set Π could be
a strict subset of [0, 1]n. As it is well known Π �= ∅; therefore, ∅ �= Π ⊆ [0, 1]n.

Definition 1. An imprecise, or set-valued, assessment I on a family of conditional events F is a (possibly 
empty) set of precise assessments P on F .

Definition 1, introduced in [21], states that an imprecise (probability) assessment I on a given family F of 
n conditional events is just a (possibly empty) subset of [0, 1]n. Given an imprecise assessment I we denote 
by Ic the complementary imprecise assessment of I, i.e. Ic = [0, 1]n \ I. In what follows, we generalize the 
notions of g-coherence, coherence, and total-coherence for interval-valued probability assessments (see, e.g., 
[24, Definitions 7a, 7b, 7c, respectively]) to the case of imprecise (in the sense of set-valued) probability 
assessments.

Definition 2. Let a sequence of n conditional events F be given. An imprecise assessment I ⊆ [0, 1]n on F
is g-coherent if and only if there exists a coherent precise assessment P on F such that P ∈ I.

Definition 3. Let I be a subset of [0, 1]n. For each j ∈ {1, 2, . . . , n}, the projection ρj(I) of I onto the j-th 
coordinate, is defined as

ρj(I) = {xj ∈ [0, 1] : pj = xj , for some (p1, . . . , pn) ∈ I}.

Definition 4. An imprecise assessment I on a sequence of n conditionals events F is coherent if and only if, 
for every j ∈ {1, . . . , n} and for every xj ∈ ρj(I), there exists a coherent precise assessment P = (p1, . . . , pn)
on F , such that P ∈ I and pj = xj .
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Fig. 1. The g-coherent assessment I′ on (E|H,¬E|H) explained in Example 1.

Definition 5. An imprecise assessment I on F is totally coherent (t-coherent) if and only if the following 
two conditions are satisfied: (i) I is non-empty; (ii) if P ∈ I, then P is a coherent precise assessment on F .

Remark 1. We observe that:

I is g-coherent ⇐⇒ Π ∩ I �= ∅ ⇐⇒ ∀j ∈ {1, . . . , n}, ρj(Π ∩ I) �= ∅ ;
I is coherent ⇐⇒ ∀j ∈ {1, . . . , n}, ∅ �= ρj(Π ∩ I) = ρj(I) ;
I is t-coherent ⇐⇒ ∅ �= Π ∩ I = I .

Then, the following relations among the different notions of coherence hold: I is t-coherent ⇒ I is coherent 
⇒ I is g-coherent.

In the following example we illustrate the different notions of coherence.

Example 1. Given two logically independent events E and H, with H �= ⊥, the set of all coherent precise as-
sessments on the pair F = (E|H, ¬E|H) is obviously the segment Π = {(x, 1 −x), x ∈ [0, 1]}. Let us consider 
three imprecise assessments on F which, we will see, differ with respect to the three notions of coherence: I ′ =
[0.25, 0.80] × [0.25, 0.80]; I ′′ = [0.25, 0.75] × [0.25, 0.75]; I ′′′ = {(x, 1 − x) : x ∈ [0.25, 0.75]}. The assessment 
I ′ is g-coherent because Π ∩ I ′ is the (non-empty) segment with extreme points (0.25, 0.75), (0.75, 0.25), see 
Fig. 1; we also observe that I ′ is not coherent and not t-coherent. The assessment I ′′ is coherent because 
∅ �= ρ1(Π ∩ I ′′) = [0.25, 0.75] = ρ1(I ′′) and ∅ �= ρ2(Π ∩ I ′′) = [0.25, 0.75] = ρ2(I ′′) (see Fig. 2); we notice 
that I ′′ is g-coherent but not t-coherent. The assessment I ′′′ is t-coherent because ∅ �= Π ∩ I ′′′ = I ′′′ (see 
Fig. 3); of course I ′′′ is coherent and g-coherent as well. Finally, we note that any subset I of [0, 1]2 such 
that Π ∩ I = ∅ is not g-coherent, not coherent, and not t-coherent.
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Fig. 2. The coherent assessment I′′ on (E|H,¬E|H) explained in Example 1.

Fig. 3. The t-coherent assessment I′′′ on (E|H,¬E|H) explained in Example 1.

Definition 6. Let I be a non-empty subset of [0, 1]n. For each sub-vector (j1, . . . , jm) of (1, . . . , n), the 
projection ρ(j1,...,jm)(I) of I onto the coordinates (j1, . . . , jm), with 1 ≤ m ≤ n, is defined as the set 
ρ(j1,...,jm)(I) ⊆ [0, 1]m such that each vector (xj1 , . . . , xjm) ∈ ρ(j1,...,jm)(I) is the sub-vector (pj1 , . . . , pjm)
of some P = (p1, . . . , pn) ∈ I.
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Let I be an imprecise assessment on the sequence F = (E1|H1, . . . , En|Hn); moreover, let En+1|Hn+1 be 
a further conditional event and let J ⊆ [0, 1]n+1 be an imprecise assessment on (F , En+1|Hn+1). We say that 
J is an extension of I to (F , En+1|Hn+1) iff ρ(1,...,n)(J ) = I, that is: (i) for every (p1, . . . , pn, pn+1) ∈ J , 
it holds that (p1, . . . , pn) ∈ I; (ii) for every (p1, . . . , pn) ∈ I, there exists pn+1 ∈ [0, 1] such that 
(p1, . . . , pn, pn+1) ∈ J .

Definition 7. Let I be a g-coherent assessment on F = (E1|H1, . . . , En|Hn); moreover, let En+1|Hn+1 be a 
further conditional event and let J be an extension of I to (F , En+1|Hn+1). We say that J is a g-coherent 
extension of I if and only if J is g-coherent.

Theorem 1. Given a g-coherent assessment I ⊆ [0, 1]n on F , let En+1|Hn+1 be a further conditional event. 
Then, there exists a g-coherent extension J ⊆ [0, 1]n+1 of I to the family (F , En+1|Hn+1).

Proof. As I is g-coherent, there exists a coherent precise assessment P on F , with P ∈ I. Then, as it is 
well known, there exists (a non-empty interval) [p′, p′′] ⊆ [0, 1] such that (P, pn+1) is a coherent precise 
assessment on (F , En+1|Hn+1), for every pn+1 ∈ [p′, p′′] (Fundamental Theorem of Probability; see, e.g., 
[4,13,16,31]). Now, let any Γ ⊆ [0, 1] be given such that Γ ∩ [p′, p′′] �= ∅; moreover, consider the extension 
J = I ×Γ on (F , En+1|Hn+1). Clearly, (P, pn+1) ∈ J for every pn+1 ∈ Γ ∩ [p′, p′′]; moreover the assessment 
(P, pn+1) on (F , En+1|Hn+1) is coherent for every pn+1 ∈ Γ ∩ [p′, p′′]. So by Definition 2, J is a g-coherent 
extension of I to (F , En+1|Hn+1). �

Given a g-coherent assessment I on a sequence of n conditional events F , for each coherent precise 
assessment P on F , with P ∈ I, we denote by [αP , βP ] the interval of coherent extensions of P to En+1|Hn+1; 
that is, the assessment (P, pn+1) on (F , En+1|Hn+1) is coherent if and only if pn+1 ∈ [αP , βP ]. Then, defining 
the set

Σ =
⋃

P∈Π∩I [αP , βP ] , (1)

for every pn+1 ∈ Σ, the assessment I ×{pn+1} is a g-coherent extension of I to (F , En+1|Hn+1); moreover, 
for every pn+1 ∈ [0, 1] \Σ, the extension I×{pn+1} of I to (F , En+1|Hn+1) is not g-coherent. Thus, denoting 
by Π′ the set of coherent precise assessments on (F , En+1|Hn+1), it holds that Σ is the projection onto the 
(n + 1)-th coordinate of the set (I × [0, 1]) ∩ Π′, that is ρn+1((I × [0, 1]) ∩ Π′) = Σ. We say that Σ is the 
set of coherent extensions of the imprecise assessment I on F to the conditional event En+1|Hn+1.

3. Probabilistic knowledge bases and entailment

Let E and H denote events, where H is a not self-contradictory event. The sentence “E is a plausible 
consequence of H” is a default, which we denote by H |∼ E (following the notation in [19,30]). Moreover, we 
denote a negated default, ¬(H |∼ E), by H |∼/ E (read: “it is not the case that: E is a plausible consequence 
of H”). We define defaults and negated defaults in terms of probabilistic assessments as follows:

Definition 8. Given two events E and H we say that H |∼ E (resp., H |∼/ E) holds iff our imprecise probability 
assessment I on E|H is I = {1} (resp., I = [0, 1[).

We observe that a default is negated by classical negation: the default H |∼ E is represented by the 
assessment {1} on E|H and the negated default H |∼/ E is represented by the assessment [0, 1[, which is 
the complementary set of {1}. Thus, we require that ¬(H |∼/ E) = ¬(¬(H |∼ E)) = (H |∼ E). Given 
two events E and H, with H �= ⊥, by coherence p(E|H) + p(¬E|H) = 1 (which holds in general). Thus, 
the probabilistic interpretation of the following types of sentences H |∼ E, H |∼ ¬E, H |∼/ ¬E, and H |∼/ E
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Table 1
Probabilistic interpretations of defaults (types A and E) and negated defaults (types I and O), 
and their respective (imprecise) assessments I on a conditional event E|H.

Type Sentence Probabilistic constraint Assessment I on E|H
A H |∼ E p(E|H) = 1 {1}
E H |∼ ¬E p(¬E|H) = 1 {0}
I H |∼/ ¬E p(¬E|H) < 1 ]0, 1]
O H |∼/ E p(E|H) < 1 [0, 1[

can be represented in terms of imprecise assessments on E|H (see Table 1). We recall that the notion 
of p-consistency for a knowledge base, given by Adams in [1], has been also studied in the framework of 
coherence (see, e.g., [20]). In [20, Definition 4] Adams’ p-consistency of a knowledge base is interpreted by 
the g-coherence of an imprecise assessment, where p(E|H) ≥ 1 − ε for every ε > 0, i.e. p(E|H) is close to 1, 
for each default H |∼ E in the given knowledge base. Therefore, the notion of p-consistency is related to 
the notion of g-coherence. Moreover, as shown in [26, Definition 2, Remark 1, Theorem 4], p-consistency 
can be defined equivalently by requiring p(E|H) = 1 for each default H |∼ E. Of course, for what concerns 
practical aspects, instead of the latter approach it is more useful to use imprecise assessments (see, e.g., 
[20,26,27,39–42]). In this paper a knowledge base K is defined as a (non-empty) finite sequence of defaults 
and negated defaults. Let K = (H1 |∼ E1, . . . , Hn |∼ En, D1 |∼/ C1, . . . , Dm |∼/ Cm) be a knowledge base, with 
n +m ≥ 1. We now define our probabilistic representation of the knowledge base K by a corresponding pair 
(FK, IK), where FK is the ordered family of conditional events (E1|H1, . . . , En|Hn, C1|D1, . . . , Cm|Dm) and 
IK is the imprecise assessment ×n

i=1{1} ××m
j=1[0, 1[ on FK. We now define the notion of p-consistency of 

a given knowledge base in terms of g-coherence.

Definition 9. A knowledge base K is p-consistent if and only if the imprecise assessment IK on FK is 
g-coherent.

In other words, K = (H1 |∼ E1, . . . , Hn |∼ En, D1 |∼/ C1, . . . , Dm |∼/ Cm) is p-consistent if and only if there 
exists a coherent precise assessment P = (p1, . . . ,pn, q1, . . . , qm) on FK = (E1|H1, . . . , En|Hn, C1|D1, . . . ,
Cm|Dm) such that pi = 1, i = 1, . . . , n, and qi < 1, i = 1, . . . , m.

Example 2. Let H �= ⊥ and Π be the set of all the coherent assessments x = p(E|H). We distinguish three 
cases. (i) H ∧ E = ⊥: Π = {0}, (H |∼ E) is not p-consistent because the assessment p(E|H) = 1 is not 
coherent; (H |∼/ E) is p-consistent because the assessment p(E|H) = 0 is coherent, hence there exists a 
coherent assessment p(E|H) such that p(E|H) < 1; (ii) H ∧ ¬E = ⊥: Π = {1}, therefore by the same 
reasoning, (H |∼ E) is p-consistent, while (H |∼/ E) is not p-consistent; (iii) H ∧ E �= ⊥ and H ∧ ¬E �= ⊥: 
Π = [0, 1], (H |∼ E) and (H |∼/ E) are separately p-consistent.

We define the notion of p-entailment of a (negated) default from a p-consistent knowledge base in terms 
of coherent extension of a g-coherent assessment.

Definition 10. Let K be p-consistent. K p-entails A |∼ B (resp., A |∼/ B), denoted by K |=p A |∼ B (resp., 
K |=p A |∼/ B), iff the (non-empty) set of coherent extensions to B|A of IK on FK is {1} (resp., a subset of 
[0, 1[).

Remark 2. We observe that, trivially, for any p-consistent A |∼ B: A |∼ B |=p A |∼/ ¬B. Then, a conclusion 
of the form A |∼ B can easily be weakened to A |∼/ ¬B, i.e., if K |=p A |∼ B, then K |=p A |∼/ ¬B.

Theorem 2. Let K be p-consistent. K |=p A |∼ B (resp., K |=p A |∼/ B), iff there exists a (non-empty) 
sub-sequence S of K: S |=p A |∼ B (resp., S |=p A |∼/ B).
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Proof. (⇒) Trivially, by setting S = K.
(⇐) Assume that S |=p A |∼ B (resp., A |∼/ B). Then, for every precise coherent assessment P ∈ IS

on FS , if the extension (P, z) on (FS , B|A) is coherent, then z = 1 (resp., z �= 1). Let P ′ ∈ IK be a coherent 
precise assessment on FK. For reductio ad absurdum we assume that the extension (P ′, z) on (FK, B|A) is 
coherent with z ∈ [0, 1[ (resp., z = 1). Then, the sub-assessment (P, z) of (P ′, z) on (FS , B|A) is coherent 
with z ∈ [0, 1[ (resp., z = 1): this contradicts S |=p A |∼ B (resp., S |=p A |∼/ B). Therefore, K |=p A |∼ B

(resp., K |=p A |∼/ B). �
A similar approach has been developed in [14, Definition 26] (see also [15]). We observe that if the 

knowledge base K consists of defaults only, then Definitions 9 and 10 coincide with the notion of p-consistency 
and p-entailment, respectively, investigated from a coherence perspective in [26] (see also [5,23,25,27]). 
Moreover, p-entailment of the inference rules of the well-known nonmonotonic System P has been studied 
in this context (e.g., [14,20], see also [3,12,18]).

Remark 3. By Table 1 the probabilistic interpretation of K = (H1 |∼ E1, . . . , Hn |∼ En, D1 |∼/ C1, . . . ,
Dm |∼/ Cm) can equivalently be represented by the assessment IK = ×n

i=1{1} ××m
j=1]0, 1] on FK =

(E1|H1, . . . , En|Hn, ¬C1|D1, . . . , ¬Cm|Dm). Definitions 9 and 10 can be rewritten accordingly.

Example 3. Given three logically independent events A, B, C, with A �= ⊥, any assessment (x, y) ∈ [0, 1]2
on (C|A, B|A) is of course coherent. Furthermore, the extension z = P (C|AB) of (x, y) on (C|A, B|A) is 
coherent if and only if z ∈ [z′, z′′], where [20]

z′ =
{

x+y−1
y > 0, if x + y > 1,

0, if x + y ≤ 1,
z′′ =

{
x
y < 1, if x < y,

1, if x ≥ y .
(2)

Then, for x = 1 and y = 1 we obtain z′ = z′′ = 1, that is (see also [14]):

(Cautious Monotonicity) (A |∼ C,A |∼ B) |=p AB |∼ C .

Moreover, for x = 1 and for any y > 0 it follows that z′ = z′′ = 1; then, we obtain (see also [19]):

(Rational Monotonicity) (A |∼ C,A |∼/ ¬B) |=p AB |∼ C . (3)

We observe that Rational Monotonicity can be equivalently formulated as follows [14,20,32]:

(AB |∼/ C,A |∼/ ¬B) |=p A |∼/ C . (4)

Example 4. Given three logically independent events A, B, C, with A �= ⊥ and B �= ⊥, in [20] it has 
been proved that any assessment (x, y) ∈ [0, 1]2 on (C|A, C|B) is coherent. Furthermore, the extension 
z = P (C|A ∨B) of (x, y) on (C|A, C|B) is coherent if and only if z ∈ [z′, z′′], where4

z′ =
{

xy
x+y−xy > 0, if x > 0 ∧ y > 0,
0, if x = 0 ∨ y = 0,

z′′ =
{

x+y−2xy
1−xy < 1, if x < 1 ∧ y < 1,

1, if x = 1 ∨ y = 1 .

Then, in our framework we obtain (see also [14,20,32]): (A |∼ C, B |∼ C) |=p A ∨ B |∼ C (Or-Rule); 
(A |∼/ C, B |∼/ C) |=p A ∨B |∼/ C (Disjunctive Rationality).

4 Note that z′ = TH
0 (x, y) and z′′ = SH

0 (x, y), where TH
0 and SH

0 are the Hamacher t-norm and t-conorm (with λ = 0), 
respectively (see, e.g., [27]).
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4. Weak Transitivity: propagation of probability bounds

In this section, we prove two results on the propagation of a precise, or interval-valued, probability 
assessment on (C|B, B|A, A|A ∨B) to C|A.

Remark 4. Let A, B, C be logically independent events. It can be proved that the assessment (x, y, t) on 
F = (C|B, B|A, A|A ∨B) is coherent for every (x, y, t) ∈ [0, 1]3, that is the imprecise assessment I = [0, 1]3
on F is t-coherent. Also I = [0, 1]3 on F ′ = (C|B, B|A, C|A) is t-coherent.5

For the proof of Theorem 4 (which will be given below) we use an algorithm which computes the in-
terval of coherent probability extensions [z′, z′′] from a coherent interval-valued probability assessment 
(see [4, Algorithm 2]). For the sake of keeping the paper a bit more self-contained, we now sketch this 
algorithm and adapt it to deal with precise coherent probability assessments.

Algorithm 1. Let Fn = (E1|H1, . . . , En|Hn) be a sequence of conditional events and Pn = (p1, . . . , pn) be 
a coherent precise probability assessment on Fn, where pj = p(Ej |Hj) ∈ [0, 1], j = 1, . . . , n. Moreover, 
let En+1|Hn+1 be a further conditional event and denote by Jn+1 the set {1, . . . , n + 1}. The steps below 
describe the computation of the lower bound z′ (resp., the upper bound z′′) for the coherent extensions 
z = p(En+1|Hn+1).

• Step 0. Expand the expression

∧
j∈Jn+1

(EjHj ∨ ¬EjHj ∨ ¬Hj)

and denote by C1, . . . , Cm the constituents contained in H0 =
∨

j∈Jn+1
Hj . Then, construct the following 

system in the unknowns λ1, . . . , λm, z

⎧⎪⎨
⎪⎩

∑
r:Cr⊆En+1Hn+1

λr = z
∑

r:Cr⊆Hn+1
λr ;∑

r:Cr⊆EjHj
λr = pj

∑
r:Cr⊆Hj

λr, j ∈ Jn ;∑
r∈Jm

λr = 1; λr ≥ 0, r ∈ Jm .

(5)

• Step 1. Check the solvability of system (5) under the condition z = 0 (resp., z = 1). If the system (5) is 
not solvable go to Step 2, otherwise go to Step 3.

• Step 2. Solve the following linear programming problem

Compute: γ′ = min
∑

r:Cr⊆En+1Hn+1

λr

(respectively: γ′′ = max
∑

r:Cr⊆En+1Hn+1

λr)

subject to:
{∑

r:Cr⊆EjHj
λr = pj

∑
r:Cr⊆Hj

λr, j ∈ Jn ;∑
r:Cr⊆Hn+1

λr = 1; λr ≥ 0, r ∈ Jm .

5 For proving total coherence of I on F (resp., F ′) it is sufficient to check that the assessment {0, 1}3 on F (resp., F ′) is 
t-coherent [21, Theorem 7], i.e., each of the eight vertices of the unit cube is coherent. Coherence can be checked, for example, by 
applying Algorithm 1 of [21] or by the CkC-package [2].
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The minimum γ′ (respectively the maximum γ′′) of the objective function coincides with z′ (respectively 
with z′′) and the procedure stops.

• Step 3. For each subscript j ∈ Jn+1, compute the maximum Mj of the function Φj =
∑

r:Cr⊆Hj
λr, 

subject to the constraints given by the system (5) with z = 0 (respectively z = 1). We have the following 
three cases:
1. Mn+1 > 0;
2. Mn+1 = 0, Mj > 0 for every j �= n + 1;
3. Mj = 0 for j ∈ I0 = J ∪ {n + 1}, with J �= ∅.
In the first two cases z′ = 0 (respectively z′′ = 1) and the procedure stops.
In the third case, defining I0 = J ∪ {n + 1}, set Jn+1 = I0 and (Fn, Pn) = (FJ , PJ ); then go to Step 0.

The procedure ends in a finite number of cycles by computing the value z′ (respectively z′′).

Theorem 3. Let A, B, C be three logically independent events and (x, y, t) ∈ [0, 1]3 be a (coherent) assessment 
on the family 

(
C|B, B|A, A|A ∨B

)
. Then, the extension z = P (C|A) is coherent if and only if z ∈ [z′, z′′], 

where

[z′, z′′] =

⎧⎨
⎩

[0, 1], t = 0;[
max

{
0, xy − (1 − t)(1 − x)

t

}
,min

{
1, (1 − x)(1 − y) + x

t

}]
, t > 0 .

The following detailed proof of Theorem 3 is obtained by applying Algorithm 1 in a symbolic way.6

Proof. Computation of the lower probability bound z′ on C|A.
Input. Fn = (C|B, B|A, A|A ∨B), En+1|Hn+1 = C|A.
Step 0. The constituents associated with (C|B, B|A, A|A ∨B, C|A) and contained in H0 = A ∨ B are 
C1 = ABC, C2 = AB¬C, C3 = A¬BC, C4 = A¬B¬C, C5 = ¬ABC, and C6 = ¬AB¬C. We construct the 
following starting system with unknowns λ1, . . . , λ6, z:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
λ1 + λ3 = z(λ1 + λ2 + λ3 + λ4), λ1 + λ5 = x(λ1 + λ2 + λ5 + λ6),
λ1 + λ2 = y(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = t(λ1 + λ2 + λ3 + λ4 + λ5 + λ6),
λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1, λi ≥ 0, i = 1, . . . , 6 .

(6)

Step 1. By setting z = 0 in System (6), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ1 + λ3 = 0,
λ5 = x(λ2 + λ5 + λ6),
λ2 = y(λ2 + λ4),
λ2 + λ4 = t,

λ2 + λ4 + λ5 + λ6 = 1,
λi ≥ 0, i = 1, . . . , 6 ;

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = λ3 = 0,
λ2 = yt,

λ4 = t(1 − y),
λ5 = x(yt + 1 − t),
λ6 = (1 − t)(1 − x) − xyt,

λi ≥ 0, i = 1, . . . , 6 .

(7)

As (x, y, t) ∈ [0, 1]3, it holds that: λ2 = yt ≥ 0, λ4 = t(1 − y) ≥ 0, and λ5 = x(yt + 1 − t) ≥ 0. Thus, 
System (7) is solvable iff λ6 ≥ 0, that is t(1 −x +xy) ≤ 1 −x. We distinguish two cases: (i) t(1 −x +xy) > 1 −x; 
(ii) t(1 − x + xy) ≤ 1 − x. In Case (i), System (7) is not solvable and we go to Step 2 of the algorithm. In 
Case (ii), System (7) is solvable and we go to Step 3.

6 Alternative proofs of Theorem 3 can be obtained by applying other equivalent methods [8,10,14,45].
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Case (i). By Step 2 we have the following linear programming problem:
Compute z′ = min(λ1 + λ3) subject to:⎧⎪⎨

⎪⎩
λ1 + λ5 = x(λ1 + λ2 + λ5 + λ6), λ1 + λ2 = y(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = t(λ1 + λ2 + λ3 + λ4 + λ5 + λ6),
λ1 + λ2 + λ3 + λ4 = 1, λi ≥ 0, i = 1, . . . , 6.

(8)

As t(1 − x + xy) > 1 − x ≥ 0, it holds that t > 0. In this case, the constraints in (8) can be rewritten in the 
following way

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 + λ5 = x
(
y + 1−t

t

)
,

λ1 + λ2 = y,

λ5 + λ6 = 1−t
t ,

λ3 + λ4 = 1 − y,

λi ≥ 0, i = 1, . . . , 6,

⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ5 = xy + x1−t
t − λ1,

λ2 = y − λ1,

λ6 = 1−t
t − xy − x1−t

t + λ1,

λ4 = 1 − y − λ3,

λi ≥ 0, i = 1, . . . , 6,

that is ⎧⎪⎨
⎪⎩

max
{
0, xy − (1−t)(1−x)

t

}
≤ λ1 ≤ min

{
y, xy + x1−t

t

}
,

λ2 = y − λ1, 0 ≤ λ3 ≤ 1 − y, λ4 = 1 − y − λ3,

λ5 = xy + x1−t
t − λ1, λ6 = (1−t)(1−x)

t − xy + λ1.

(9)

As t(1 − x + xy) > 1 − x ≥ 0, it holds that xy − (1 − x)(1 − t)/t > 0. Thus, the minimum of (λ1 + λ3)
subject to (9) is obtained at (λ′

1, λ
′
3) = (xy − (1 − t)(1 − x)/t, 0). The procedure stops yielding as output

z′ = λ′
1 + λ′

3 = xy − (1 − t)(1 − x)/t > 0.
Case (ii). We take Step 3 of the algorithm. We denote by Λ and S the vector of unknowns (λ1, . . . , λ6) and 
the set of solution of System (7), respectively. We consider the following linear functions (associated with 
the conditioning events H1 = B, H2 = H4 = A, H3 = A ∨B) and their maxima in S:

Φ1(Λ) =
∑

r:Cr⊆B λr = λ1 + λ2 + λ5 + λ6,

Φ2(Λ) = Φ4(Λ) =
∑

r:Cr⊆A λr = λ1 + λ2 + λ3 + λ4,

Φ3(Λ) =
∑

r:Cr⊆A∨B λr = λ1 + λ2 + λ3 + λ4 + λ5 + λ6 ,

Mi = maxΛ∈S Φi(Λ), i = 1, 2, 3, 4 .

(10)

By (7) we obtain: Φ1(Λ) = yt + 1 − t, Φ2(Λ) = Φ4(Λ) = t, and Φ3(Λ) = 1, ∀Λ ∈ S. Then, M1 = yt + 1 − t, 
M2 = M4 = t, and M3 = 1. We consider two subcases: t > 0; t = 0. If t > 0, then M4 > 0 and we are in the 
first case of Step 3. Thus, the procedure stops and yields z′ = 0 as output. If t = 0, then M1 > 0, M3 > 0 and 
M2 = M4 = 0. Hence, we are in third case of Step 3 with J = {2}, I0 = {2, 4} and the procedure restarts 
with Step 0, with Fn replaced by FJ = (B|A).
(2nd cycle) Step 0. The constituents associated with (B|A, C|A), contained in A, are C1 = ABC, C2 =
AB¬C, C3 = A¬BC, C4 = A¬B¬C. The starting system is{

λ1 + λ2 = y(λ1 + λ2 + λ3 + λ4), λ1 + λ3 = z(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = 1, λi ≥ 0, i = 1, . . . , 4 .

(11)

(2nd cycle) Step 1. By setting z = 0 in System (11), we obtain
{
λ2 = y, λ1 + λ3 = 0, λ4 = 1 − y, λi ≥ 0, i = 1, . . . , 4 . (12)

As y ∈ [0, 1], System (12) is always solvable; thus, we go to Step 3.
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(2nd cycle) Step 3. We denote by Λ and S the vector of unknowns (λ1, . . . , λ4) and the set of solution of 
System (12), respectively. The conditioning events are H2 = A and H4 = A; then the associated linear 
functions are: Φ2(Λ) = Φ4(Λ) =

∑
r:Cr⊆A λr = λ1 + λ2 + λ3 + λ4. From System (12), we obtain: Φ2(Λ) =

Φ4(Λ) = 1, ∀Λ ∈ S; so that M2 = M4 = 1. We are in the first case of Step 3 of the algorithm; then the 
procedure stops and yields z′ = 0 as output.

To summarize, for any (x, y, t) ∈ [0, 1]3 on (C|B, B|A, A|A ∨ B), we have computed the coherent lower 
bound z′ on C|A. In particular, if t = 0, then z′ = 0. Moreover, if t > 0 and t(1 − x + xy) ≤ 1 − x, that is 
xy−(1 −t)(1 −x)/t ≤ 0, we also have z′ = 0. Finally, if t(1 −x +xy) > 1 −x, then z′ = xy − (1 − t)(1 − x)/t.

Computation of the upper probability bound z′′ on C|A
Input and Step 0 are the same as in the proof of z′.
Step 1. By setting z = 1 in System (6), we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ2 + λ4 = 0,
λ1 + λ5 = x(λ1 + λ5 + λ6),
λ1 = y(λ1 + λ3), λ1 + λ3 = t,

λ1 + λ3 + λ5 + λ6 = 1,
λi ≥ 0, i = 1, . . . , 6 ,

⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 = yt, λ3 = t(1 − y),
λ2 = λ4 = 0,
λ5 = x− xt + xyt− yt,

λ6 = (1 − x)[1 − t(1 − y)],
λi ≥ 0, i = 1, . . . , 6 .

(13)

As (x, y, t) ∈ [0, 1]3, it holds that: λ1 = yt ≥ 0, λ3 = t(1 − y) ≥ 0, and λ6 = (1 − x)[1 − t(1 − y)] ≥ 0. 
Then, System (13) is solvable if and only if λ5 ≥ 0, i.e., t(x + y − xy) ≤ x. We distinguish two cases: 
(i) x + xyt − xt − yt < 0; (ii) x + xyt − xt − yt ≥ 0. In Case (i), System (13) is not solvable and we go to 
Step 2 of the algorithm. In Case (ii), System (13) is solvable and we go to Step 3.

Case (i). We take Step 2 and consider the following linear programming problem: Compute z′′ =
max(λ1 + λ3), subject to the constraints in (8). As x + xyt − xt − yt < 0, that is t(x + y − xy) >
x ≥ 0, it holds that t > 0. In this case, the constraints in (8) can be rewritten as in (9). Since 
x + xyt − xt − yt < 0, it holds that x + xyt − xt < yt ≤ y. Thus, we obtain the maximum of (λ1 + λ3)
subject to (9) at (λ′′

1 , λ
′′
3) = (xy − x + x/t, 1 − y). The procedure stops and yields the following output: 

z′′ = 1 − y − x + xy + x/t = (1 − x)(1 − y) + x/t.
Case (ii). We take Step 3 of the algorithm. We denote by Λ and S the vector of unknowns (λ1, . . . , λ6) and 

the set of solution of System (13), respectively. We consider the functions given in (10). From System (13), 
we obtain M1 = yt + 1 − t, M2 = M4 = t, and M3 = 1. If t > 0, then M4 > 0 and we are in the first 
case of Step 3. Thus, the procedure stops and yields z′′ = 1 as output. If t = 0, then M1 > 0, M3 > 0 and 
M2 = M4 = 0. Hence, we are in the third case of Step 3 with J = {2}, I0 = {2, 4} and the procedure restarts 
with Step 0, with Fn replaced by FJ = (E2|H2) = (B|A) and An replaced by AJ = ([α2, β2]) = ([y, y]).
(2nd cycle) Step 0. This is the same as the (2nd cycle) Step 0 in the proof of z′.
(2nd cycle) Step 1. By setting z = 1 in System (6), we obtain

{
λ1 = y, λ3 = 1 − y, λ2 + λ4 = 0, λi ≥ 0, i = 1, . . . , 4 . (14)

As y ∈ [0, 1], System (14) is always solvable; thus, we go to Step 3.
(2nd cycle) Step 3. Like in the (2nd cycle) Step 3 of the proof of z′, we obtain M4 = 1. Thus, the procedure 
stops and yields z′′ = 1 as output.

To summarize, for any assessment (x, y, t) ∈ [0, 1]3 on (C|B,B|A,A|A ∨B), we have computed the 
coherent upper probability bound z′′ on C|A. In particular, if t = 0, then z′′ = 1. Moreover, if t > 0 and 
t(x + y − xy) ≤ x, that is (x + y − xy) ≤ x

t ⇐⇒ x
t − x − y + xy ≥ 0 ⇐⇒ (1 − x)(1 − y) + x

t ≥ 1, we also 
have z′′ = 1. Finally, if t(x + y − xy) > x, then z′′ = (1 − x)(1 − y) + x

t . �
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Theorem 4. Let A, B, C be three logically independent events and I = ([x1, x2] × [y1, y2] × [t1, t2]) ⊆ [0, 1]3
be an imprecise (totally-coherent) assessment on 

(
C|B, B|A, A|A ∨ B

)
. Then, the set Σ of the coherent 

extension of I is the interval [z∗, z∗∗], where [z∗, z∗∗] =

⎧⎨
⎩

[0, 1], t = 0;[
max

{
0, x1y1 −

(1 − t1)(1 − x1)
t1

}
,min

{
1, (1 − x2)(1 − y1) + x2

t1

}]
, t > 0 .

Proof. We observe that Σ =
⋃

P∈I [z′P , z′′P ] = [z∗, z∗∗]. If t1 = 0, we obtain [z∗, z∗∗] = [0, 1] by Theorem 3. 
If t1 > 0, the proof is straightforward by observing that the lower bound z′ in Theorem 3 is non-decreasing 
in the arguments x, y, t; moreover, the upper bound z′′ is non-decreasing in the argument x, while it is 
non-increasing in the argument y and t. �
Remark 5. By applying Theorem 4 with x1 = y1 = 1 − ε, t1 > 0, and x2 = y2 = t2 = 1 we obtain 
z∗ = max

{
0, (1 − ε)2 − (1−ε)ε

t1

}
and z∗∗ = 1, with z∗ = 0 if and only if ε = 1 or (ε < 1) ∧ (t1 ≤ ε/(1 − ε)).

5. Weak Transitivity involving (negated) defaults

Let A, B, C be three logically independent events. By Remark 4, the p-consistent knowledge base 
(B |∼ C,A |∼ B) neither p-entails A |∼ C nor p-entails A |∼/ C. This will be denoted by (B |∼ C, A |∼ B) �p

A |∼ C and (B |∼ C, A |∼ B) �p A |∼/ C, respectively.

Theorem 5. (B |∼ C, A |∼ B, A ∨B |∼/ ¬A) |=p A |∼ C.

Proof. By Remark 4, the knowledge base K = (B |∼ C, A |∼ B, A ∨ B |∼/ ¬A) is p-consistent. Based on 
Remark 3, we set IK = {1} × {1} × ]0, 1] and FK =

(
C|B, B|A, A|A ∨ B

)
. Let P be any precise coherent 

assessment on FK such that P ∈ IK, i.e., P = (1, 1, t), with t ∈ ]0, 1]. From Theorem 3, the interval of 
coherent extensions from P on FK to C|A is [z′P , z′′P ] = [1, 1]. Then, by Equation (1), the set of coherent 
extensions to C|A from IK on FK is 

⋃
P∈IK

[z′P , z′′P ] = [1, 1]. �
The inference rules expressed in Theorem 5 and in Theorem 7 have been studied within a different 

semantics by [19].
By Remark 4, we also observe that the p-consistent knowledge base (B |∼ C,A |∼/ ¬B) does not p-entail 

A |∼/ ¬C.

Theorem 6. (B |∼ C, A |∼/ ¬B, A ∨B |∼/ ¬A) |=p A |∼/ ¬C.

Proof. By Remark 4, the knowledge base K = (B |∼ C, A |∼/ ¬B, A ∨ B |∼/ ¬A) is p-consistent. Based on 
Remark 3, we set IK = {1} × ]0, 1] × ]0, 1] and FK =

(
C|B, B|A, A|A ∨ B

)
. Let P be any precise coherent 

assessment on FK such that P ∈ IK, i.e., P = (1, y, t), with y ∈ ]0, 1] and t ∈ ]0, 1]. From Theorem 3, the 
interval of coherent extensions from P on FK to C|A is [z′P , z′′P ] = [y, 1]. Then, by Equation (1), the set of 
coherent extensions to C|A from IK on FK is 

⋃
P∈IK

[z′P , z′′P ] =
⋃

(y,t)∈]0,1]×]0,1][y, 1] = ]0, 1]. Therefore, the 
set of coherent extensions on ¬C|A is [0, 1[. �
Remark 6. We observe that

(B |∼ C,A |∼/ ¬B,A ∨B |∼/ ¬A) |=p AB |∼ C , (15)

and hence
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(B |∼ C,A |∼ B,A ∨B |∼/ ¬A) |=p AB |∼ C , (16)

because p(C|A ∧ B) = 1 follows from the probabilistic constraints p(C|B) = 1, p(B|A) > 0, and 
p(A|A ∨B) > 0. Indeed, these constraints imply p(¬C|B) = 1 − P (C|B) = 0 and p(AB|A ∨ B) =
p(B|A)p(A|A ∨B) > 0; then, by the probability compound theorem

p(ABC|A ∨B) = p(C|AB)p(AB|A ∨B)

it follows that

p(C|AB) = p(ABC|A∨B)
p(AB|A∨B) = p(ABC|A∨B)

p(ABC|A∨B)+p(AB¬C|A∨B) =

= p(ABC|A∨B)
p(ABC|A∨B)+p(A|¬CB)p(¬C|B)p(B|A∨B) = p(ABC|A∨B)

p(ABC|A∨B) = 1 .

We recall the probabilistic Cut Rule given in [20]:

if p(C|AB) = x and p(B|A) = y, then p(C|A) = z ∈ [xy, xy + 1 − y] .

In particular, for x = 1 and for any y > 0 it follows that z > 0; moreover, for x = 1 and y = 1 it follows 
that z = 1. This means in terms of defaults:

AB |∼ C,A |∼/ ¬B |=p A |∼/ ¬C ; (17)

AB |∼ C,A |∼ B |=p A |∼ C . (18)

We also observe that the assessment p(C|B) = p(C|AB) = p(B|A) = 1 is coherent, then from (18) we 
obtain

B |∼ C,A |∼ B,AB |∼ C |=p A |∼ C (19)

which is a (weaker) version of Theorem 5 where the premise A ∨ B |∼/ ¬A has been replaced by AB |∼ C. 
Likewise, from (17) we obtain

B |∼ C,A |∼/ ¬B,AB |∼ C |=p A |∼/ ¬C (20)

which is a (weaker) version of Theorem 6.

Theorem 7. (B |∼ C, A |∼ B, B |∼/ ¬A) |=p A |∼ C.

Proof. It can be shown that the assessment [0, 1]3 on (C|B, B|A, A|B) is t-coherent. Then, K = (B |∼ C,

A |∼ B, B |∼/ ¬A) is p-consistent. We set IK = {1} × {1} × ]0, 1] and FK =
(
C|B, B|A, A|B

)
. We observe 

that A|B ⊆ A|A ∨B, where the binary relation ⊆ denotes the well-known Goodman and Nguyen inclusion 
relation between conditional events (see, e.g., [23,27]). Coherence requires that p(A|B) ≤ p(A|A ∨ B). 
Let P be any precise coherent assessment on FK such that P ∈ IK, i.e., P = (1, 1, w), with w ∈ ]0, 1]. 
Thus, for any coherent extension P ′ = (1, 1, w, t) of P on (FK, A|A ∨ B), it holds that 0 < w ≤ t. Then, 
K′ = (B |∼ C, A |∼ B, B |∼/ ¬A, A ∨ B |∼/ ¬A) is p-consistent. Thus, by Theorem 5, K′ |=p A |∼ C. 
Then, for every coherent extension P ′′ = (1, 1, w, t, z) of P ′ on (FK′ , C|A) it holds that z = 1. By reductio 
ad absurdum, if for some z < 1 the extension (1, 1, w, z) on (FK, C|A) of P ∈ IK on FK were coherent, 
then—with 0 < w ≤ t and z < 1—the assessment (1, 1, w, t, z) on (FK′ , C|A) would be coherent, which 
contradicts the conclusion z = 1 above. Thus, for every coherent extension (1, 1, w, z) of P ∈ IK on (FK, C|A)
it holds that z = 1. �
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Theorem 8. (B |∼ C, A |∼/ ¬B, B |∼/ ¬A) |=p A |∼/ ¬C.

Proof. The proof exploits Theorem 6 and is similar to the proof of Theorem 7. �
Remark 7. Of course by Definition 8, Theorem 5 to Theorem 8 can be rewritten in terms of probability con-
straints. Theorem 5, for example, would then read as follows: p(C|B) = 1, p(B|A) = 1, and p(A|A ∨B) > 0
implies p(C|A) = 1.

6. Applications to classical categorical syllogisms

Classical categorical syllogisms are arguments consisting of two premises and a conclusion. Theorem 3
can be exploited to construct a coherence-based probability semantics of classical categorical syllogisms, 
specifically those of the well-known syllogistic Figure 1, which were already investigated by Aristotle in his 
“Analytica Priora.” Figure 1 syllogisms are valid transitive argument forms which are composed of univer-
sally/existentially quantified statements and their respective negated versions (see, e.g., [34]). Examples of 
valid syllogisms of Figure 1 are Modus Barbara (Every M is P , Every S is M , therefore Every S is P ) and 
Modus Darii (Every M is P , Some S is M , therefore Some S is P ).

There are four basic syllogistic sentence types involved in the construction of the syllogisms: (A) Every 
a is b, (E) No a is b, (I) Some a is b, and (O) Some a is not b, where “a” and “b” denote two of the three 
categorical terms M , P , or S. We observe that from a first order logic point of view, the S, M , and P terms 
involved in the basic syllogistic sentence types are usually interpreted as predicates, which are interpreted 
in our probabilistic semantics by events. Indeed, we relate each predicate to an event as follows. Imagine a 
random experiment where the (random) outcome is denoted by X. Consider, for example, the predicate S. 
Depending on the result of the experiment, X may satisfy or not satisfy the predicate S. Then, we denote 
by ES the event “X satisfies S” (the event ES is true if X satisfies the predicate S and ES is false if X
does not satisfy S). We conceive the predicate S as the event ES , which will be true or false. Thus, we 
simply identify ES by S (in this sense S is both a predicate and an event). The same reasoning applies to 
the syllogistic P and M terms, which are in our context both predicates and events.

The basic syllogistic sentence types (A) Every a is b, (E) No a is b, (I) Some a is b, and (O) Some a is 
not b can be interpreted by (A) a |∼ b, (E) a |∼ ¬b, (I) a |∼/ ¬b, and (O) a |∼/ b, respectively. Table 1 presents 
the respective probabilistic interpretation (see also [11]).

Based on this interpretation of the basic syllogistic sentence types, we construct default versions of 
classical categorical syllogisms. The Weak Transitivity rule in the statement of Theorem 5, for exam-
ple, is our default version of Modus Barbara, i.e., (M |∼ P, S |∼ M, and S ∨M |∼/ ¬S) |=p S |∼ P . By 
weakening the conclusion of Modus Barbara (see Remark 2), we obtain the default version of Modus Bar-
bari, i.e., (M |∼ P, S |∼ M, and S ∨M |∼/ ¬S) |=p S |∼/ ¬P . Theorem 6 is our default version of Modus 
Darii, i.e., (M |∼ P, S |∼/ ¬M, and S ∨M |∼/ ¬S) |=p S |∼/ ¬P . We observe that in our approach the premise 
S ∨M |∼/ ¬S, that we call EI 1, can serve as an existential import assumption for the validity of the Figure 1
syllogisms. In case of Modus Barbara, for example, the (major and minor) premises alone (M |∼ P, S |∼ M)
do not p-entail the conclusion S |∼ P (see Section 5, see also Remark 4 for the probabilistic version). Sim-
ilarly, the (major and minor) premises alone (M |∼ P, S |∼/ ¬M) do not p-entail the conclusion S |∼/ ¬P in 
the case of Modus Darii. Thus, by adding the existential import assumption S ∨M |∼/ ¬S to the respective 
premise sets, the validity of Modus Barbara and Modus Darii is guaranteed.

In terms of probabilistic constraints the existential import assumption EI 1 is expressed by p(S|S∨M) > 0; 
moreover, Theorems 5 and 6 are expressed, respectively, by

(Modus Barbara) p(P |M) = 1, p(M |S) = 1, and EI 1 =⇒ p(P |S) = 1 ,

(Modus Darii) p(P |M) = 1, p(M |S) > 0, and EI 1 =⇒ p(P |S) > 0 .
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However, by instantiating S, M, P in Theorem 3, we obtain that the whole interval [0, 1] on P |S is 
a coherent extension of the probabilistic constraints p(P |M) = 1, p(M |S) = 1 (or p(M |S) > 0), and 
p(S|S ∨M) = 0. Then, (p(P |M) = 1, p(M |S) = 1, and p(S|S ∨M) = 0) does not imply p(P |S) = 1. In 
other words, Modus Barbara (and hence Transitivity) is not valid when we replace in the premises set 
the existential import assumption EI 1 by its negation (i.e., p(S|S ∨M) = 0). Similarly for Modus Darii: 
(p(P |M) = 1, p(M |S) > 0, and p(S|S ∨M) = 0) does not imply p(P |S) > 0. As noted above, Modus 
Barbara also implies Modus Barbari:

(Modus Barbari) p(P |M) = 1, p(M |S) = 1, and EI 1 =⇒ p(P |S) > 0 .

We note that in our approach we need an existential import assumption for all: Modus Barbara, Modus 
Barbari, and Modus Darii. From a first order logic point of view, however, for both Modus Barbara and 
Modus Darii the existential import assumption is not required.7 Historically, it seems plausible to us that an 
existential import has been assumed as an (at least implicit) background assumption in classical categorical 
syllogisms.

The considered Figure 1 syllogisms can also be expressed with the (stronger) notion of existential import8
EI 2 : p(S|M) > 0 (see [17]). In particular, Modus Barbara and Modus Darii are presented in terms of 
defaults in Theorem 7 and in Theorem 8, respectively. Moreover, in all previous versions of syllogisms we do 
not presuppose any positive antecedent probabilities in our framework. Assuming the positive antecedent 
probability EI 3 : p(S) > 0 would be yet another existential import assumption sufficient for the validity of 
Modus Barbara, Modus Barbari, and Modus Darii which is stronger than EI 1. Indeed, coherence requires 
that

p(S) = p(S ∧ (S ∨M)) = p(S|S ∨M)P (S ∨M) .

Hence, p(S) > 0 implies p(S|S ∨ M) > 0 (or equivalently: p(S|S ∨ M) = 0 implies p(S) = 0). Therefore, 
p(S) > 0 is stronger than p(S|S ∨M) > 0. Moreover, in Modus Barbara, Modus Barbari, and Modus Darii 
with EI 3 coherence also requires positive probability for the antecedent of the major premise, indeed, as 
p(M |S) > 0 and p(S) > 0, it holds that: p(M) ≥ p(M ∧ S) = p(M |S)p(S) > 0. However, it can be proved 
that p(P |M) = 1, p(M |S) > 0, and p(S) = 0 does not imply p(M) = 0. The deepening of these aspects 
could be related to the general problem of zero layers largely studied in [14].

Based on Remark 6, we observe that Figure 1 syllogisms can also be expressed with the (weaker) notion 
of existential import EI 4 : p(P |MS) = 1. In particular, Modus Barbara and Modus Darii are presented in 
terms of defaults in formulas (19) and (20), respectively. We note that by adding EI 4 to the premise set 
of the considered Figure 1 syllogisms, we have p(P |MS) = p(P |M) = 1, which is postulated (in terms of 
conditional independence assumptions) in [11] for obtaining the validity of the corresponding syllogisms. 
However, in contrast to [11], we obtain the validity of these syllogisms with EI 4 even without presupposing 
positive antecedent probabilities.

7 From a first order logic point of view, the existential import is trivially satisfied in Modus Darii (i.e., ∀x(Mx ⊃ Px) and 
∃x(Sx ∧ Mx) logically implies ∃x(Sx ∧ Px), where “⊃” denotes the material conditional) as the minor premise (∃x(Sx ∧ Mx)) 
logically entails the existential import (∃xSx). Moreover, the first order logic version of Modus Barbara, (i.e., ∀x(Mx ⊃ Px)
and ∀x(Sx ⊃ Mx) logically implies ∀x(Sx ⊃ Px)) can be validated without an existential import assumption. Indeed, Modus 
Barbara would also be valid, e.g., if the minor premise is vacuously true (i.e., if ¬∃xSx). For showing the logical validity of Modus 
Barbari (i.e., ∀x(Mx ⊃ Px) and ∀x(Sx ⊃ Mx) logically implies ∃x(Sx ∧Px)), however, the existential import assumption (∃xSx) 
is required, as otherwise both premises could be (vacuously) true (i.e., ∀x(Mx ⊃ Px) and ∀x(Sx ⊃ Mx)) while the conclusion 
(∃x(Sx ∧ Px)) would then be false and therefore Modus Barbari would not be valid.
8 As observed in the proof of Theorem 7, S|M ⊆ S|S ∨ M and by coherence it follows that p(S|M) ≤ p(S|S ∨ M). Hence, 

p(S|M) > 0 implies p(S|S ∨ M) > 0 but not vice versa. In this sense, EI2 is stronger than EI1. However, the vice versa holds in 
the light of the considered premises: if p(M |S) > 0 (i.e., the minor premise of the syllogism) and p(S|S ∨ M) > 0, then p(S|M) > 0. 
Indeed, p(M |S) > 0 and p(S|S∨M) > 0 implies p(M ∧S|S∨M) = p(M |S)p(S|S∨M) > 0; moreover, as (M ∧S|M ∨S) ⊆ (S|M), 
it follows that p(S|M) ≥ p(M ∧ S|M ∨ S) > 0.
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We are currently working on a coherence-based probability semantics for classical categorical syllogisms, 
where we further exploit the ideas presented above.

7. Default square of opposition

In the context of categorical syllogisms, the well-known traditional square of opposition is used to study 
logical relations among the four basic syllogistic sentence types A, E, I, and O (see, e.g., [33]), which are: 
contradiction, contrariety, subcontrariety, and subalternation. In this section we introduce a new interpre-
tation of the traditional square of opposition in terms of defaults and negated defaults. We now use the 
notions of p-consistency (Definition 9) and p-entailment (Definition 10) to define suitable interpretations 
of the four logical relations among A, E, I, and O, which were defined in terms of defaults and negated 
defaults in Section 6 (see also Table 1).

Let d denote a sentence expressing a default or a negated default.

Definition 11 (Contrariety). Given two statements d1 and d2, we say that d1 and d2 are contraries iff the 
sequence (d1, d2) is not p-consistent.9

Definition 12 (Subcontrariety). Given two sentences d1 and d2, we say that d1 and d2 are subcontraries iff 
the sequence (¬d1, ¬d2) is not p-consistent.

Definition 13 (Contradiction). Given two sentences d1 and d2, we say that d1 and d2 are contradictories iff 
they are contraries and subcontraries.

Definition 14 (Subalternation). Given two sentences d1 and d2, we say that d2 is a subaltern of d1 iff d1

p-entails d2.

By coherence, it is easy to verify the following relations among the basic syllogistic sentence types A, 
E, I, and O:

(i) S |∼ P and S |∼ ¬P are contraries;
(ii) S |∼/ ¬P and S |∼/ P are subcontraries;
(iii) S |∼ P and S |∼/ P are contradictories;

S |∼ ¬P and S |∼/ ¬P are contradictories;
(iv) S |∼/ ¬P is a subaltern of S |∼ P ;

S |∼/ P is a subaltern of S |∼ ¬P .

Based on the relations (i)–(iv) we construct a square of opposition in terms of defaults and negated defaults, 
which is depicted in Fig. 4. We note that in our default square of opposition we implicitly assume that the 
antecedent S must not be a self-contradictory event (S �= ⊥). In general, this can be interpreted as a 
(logical) existential import assumption, which is always presupposed in coherence-based probability logic. 
In our context, self-contradictory antecedents do not make any sense since the conditional event P |S is 
undefined if S ≡ ⊥.

9 Traditionally if two statements s1 and s2 are contraries, then s1 and s2 cannot both be true. Some definitions of contrariety addi-
tionally require that “s1 and s2 can both be false” (for a discussion see, e.g., [29,44]). We omit the respective (probabilistic) version 
of this additional requirement in our definition of contrariety. Similarly, mutatis mutandis, in our definition of subcontrariety.
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Fig. 4. Default square of opposition defined on the four sentence types introduced in Table 1. It provides a new interpretation of 
the traditional square of opposition (see, e.g., [33]), where the corners are labeled by “Every S is P” (A), “No S is P” (E), “Some 
S is P” (I), and “Some S is not P” (O).

8. Concluding remarks

In this paper we proved coherent probability propagation rules for Weak Transitivity. We applied our 
results to demonstrate the validity of selected inference patterns involving defaults and—new probabilis-
tic notions of—negated defaults in the context of nonmonotonic reasoning. Moreover, we illustrated how 
our results can also be applied to develop a coherence-based probability semantics of classical categorical 
syllogisms and to construct a new version of the square of opposition.

Our definition of negated defaults, based on imprecise probabilities (Section 3), can be seen as an in-
stance of the wide-scope reading of the negation of a conditional. It offers an interesting alternative to the 
narrow-scope reading, where a conditional is negated by negating its consequent [35].

Finally, we note that most of our results concerning the probability propagation rules of Weak Transitivity 
would also hold within standard approaches to probability where conditional probability p(E|H) is defined 
by the ratio p(E ∧H)/p(H) (requiring positive probability of the conditioning event, p(H) > 0). However, 
in our coherence-based approach, our results even hold when conditioning events have zero probability. 
Furthermore, we observe that, by Theorem 3, p(C|B) = 1, p(B|A) = 1, and p(A|A ∨ B) = 0 implies 
0 ≤ p(C|A) ≤ 1. This observation cannot be made in standard approaches to probability, as p(A|A ∨B) = 0
implies that the probability of the conditioning event A equals to zero, i.e., P (A) = 0.
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